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I. INTRODUCTION

The purpose of this technical memorandum is to describe

an analytical method for obtaining the sound pressure field due

to a plane wave incident on a complex consisting of an infinite

length elliptical ("nearly straight") baffle and an infinite

length right circular cylinder. The problem is formulated so

that the baffle shields the cylinder from the incident plane

wave. The model used for this boundary value problem is a gen-

eralization of a previous concentric baffle model used for studying

the interaction of the sonar baffle and transducer with screw

noise.1 '2 The analytical results are presented in a form suitable

for computing the total sound pressure at the transducer

(cylinder) face as well as the incident and reflected portions

of the field solution there.

The material in this memorandum is devoted solely to

the development of a formal solution for the boundary value

problem as described. An investigation of numerical methods for

the computation of the solution is being conducted. In addition

it should be noted that while the boundary value problem described

in this memorandum is useful for studying the interaction of the

baffle-transducer with screw noise, the mathematical methods

which are developed can readily be applied to a study of the

interaction of the transducer and an elliptical dome during

transmission. This application is currently being studied.

-1

iAn Analytic Solution to the Sound Pressure Field Resulting from
a Plane Wave Incident on a Cylinder and Concentric Cylindrical
Section, TRACOR Report 63-112-U, March 14, 1963.
2An Analytical Investigation of Sonar Dome Spoking, TRACOR
Report, 64-116-C, February 14, 1964.
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II. FORMULATION

In the formulation of the solution of our problem we

consider the four coordinate systems shown in Figure 1. The

sound pressure as a function of the space coordinates and time

satisfies the wave equation

xx +  yy 2 1 tt (I)c

The subscripts in this equation denote partial differentation,

the partial derivatives being taken with respect to the entity

used as the subscript. The equation may be separated by assuming

that

!(x.yt) = p(x,y) f(t) . (2)

Substitution of this assumed form for ' into equation (1) yields

p + 2 f
- 2f (3)

where the dot notation represents time derivatives. The left

hand side of equation (3) is a function of x and y while the

right hand side is a function of time only. Since x, y, and

t are independent each side of equation is a constant. Thus

taking the constant (which is called the separation constant)

to be -k 2 equation (3) yields

XX V=k (4)

and
1 f _k2 (5)

2f -

The equation (4) may be rewritten as

Pxx+ pyy +kp=0. (6)
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This is the Helmholtz equation and it is the partial differential

which describes the spatial variation of the sound pressure field.

The coordinate systems shown in Figure 1 are related by

x '-y (7)

a cosh cos 0

x =2 sinh sincp (8)

and

! =p cos a

y =p sinO . (9)

When the Helmholtz equation is transformed into elliptical

coordinates through the equations (8) it takes on the form

a 2 k 2 22

p + p + 2 2 [cosh 2 p - cos2 cp]p = 0 (10)

This form of the Helmholtz equation can be separated by assuming

a solution of the form

p = M() P(cp) (11)

The resulting ordinary differential equations are

P" + (b - h 2 cos 2 C1)P = 0 (12)

and

M" + (h2 cosh 2  - b)M = 0 . (13)

Here b is the separation constant and

h2 _a 2k2

h 2 a (14)

The equations (12) and (13) are forms of the Mathieu equation.

3
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At this point a few remarks regarding solutions to the

Mathieu equations are appropriate. We are attempting to define

a sound field continuous near the baffle (IL=s). This implies

that we seek solutions to equation (12) which are periodic in ep

(where 2n is an integral multiple of the period). There exist

two countably infinite sets of values for the separation constant

b viz. a0x, aI a 2 -' and P0, 1,) ... , for which the solutions

have this property3 . In the problem at hand we are interested

only in those solutions which are even functions of cp about

cp= n/2. In this particular case we need only study the solutions

which correspond to the subsets m0, l2 a4 ... , and Pl' P 5 "'.'

since these and only these have this desired property, i.e.

are even functions of cp about cp = n/2.

The above requirement for a specific set of solutions

for equation (12) defines the allowable values of b. For each

value of b there are two solutions of equation (13).

Solutions of equation (12) correspondong to the a.0, a.1

a 2 '" are denoted by Sem(h,cos co) and those corresponding to

PO) P1 , P2 ... are denoted by Som(h,cos 
cp).

The two solutions of equation (13) corresponding to the

a are denoted by Jen(h,cosh p.) and Ne (h,cosh p), whereas the

two corresponding to the Pm are denoted by Jo (h,cosh p) and

Nom (h,cosh p).

We therefore have the solution for the FVlmholtz equation

which is an even function of p about cp = n/2,

p [2m ([2m+B2m Ne2m] Seun
m=O

+ [C'I2 1 J + D' Noi+ 1  Som+l1 . (15)

3Morse, P.M. and H. Feshbach; Methods of Theoretical Physics;

McGraw Hill Book Company, Inc., New York, 1953; p. 5b6.
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The expression for the pressure due to a plane wave

proceeding in the direction of the positive y axis (with time

factor e- iwt surpressed) in terms of the Mathieu functions is

e n(h) Sem(hcos cp)Jem(h,cosh ji)

+ i(-lm S°2m+l(h'O)

+ il) So2m+l(h,cos cp)Jo2m+l(h,cosh p) . (16)

Here the Me2m(h) and M0im+l(h) are constants.

The total sound pressure field is the sum of the plane

wave pressure and the pressure given in equation (15), i.e.

[ Se~ (h,0)

Ptot ~r (A + e"2m~' ',p)
M=O M2+ h

+ B2 Ne2m(h,cosh .)] Sem(h, cos ep)

+ [(Ci+ + M(-l~m (h .. .. .Join+l(h,cosh )

+ D 2m 1 No +(h,cosh g)]So2m+l(h,cos cp)} (17)

where / AL A, /6 B,., = B^m -'m = C and2m CM ,nl
/6T D2r+ I = •~

4 1bid, p. 1410.
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We impose the condition corresponding to zero pressure at

the baffle

Ptot(e ' O) = 0 (18)

on the total pressure. This shows

(-l)mSe2m(h,0 ) Je2m(h,cosh e)
Bam = - (Am + Me2m(h) ) Nem(h,cosh e) (19)

and

D l (C~ + i(-i)m so2m4.1 (h,O) JO2m+l(h,cosh e) (20)
M 2m+l(h) No2m+l (h,cosh e)

Equation (17) is therefore reduced to

= f (-l)mSe2m (h' O)

- ' [Ae + ][Je2m(h,cosh p)m=O 1 2 M e2m (h)

Je~m(h,cosh e)
Ne2m(h, cosh e) Ne2m(h, cosh p)]Se 2m (h, cos 0)

i (-i, csh e) 2m O

+ [C2m+ + i()MO 2m(h,) ][JO2m+l(h, cosh p,)

JO2m+l(h, cosh e) lh
No- (h, cosh ) No l cosh p)]SO2m+l(h , cos -) (21)

The total pressure as given by the equation (21) represents the

collection of all fields which are even functions of x, i.e. about

the y axis, with zero pressure at the baffle, and in which a plane

wave is moving in the positive y direction. If we could impose the

boundary condition at the face of the transducer we

7
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could complete our problem. This however is not plausible because
of the nature of the transducer face as described in the p.,cp
coordinates.

The Helmholtz equation when transformed into the polar
coordinates is

P + PP p P8 2 + 1 2p = O. (22)

Separation of equation (22) by taking

p = R(p) T(O) (23)
~Q) gives

R" + R' + (k 2  n2 )R = 0 (24)

and P

T" + n2 T =0. (25)

Continuity in 0 implies that n must be an integer. The solution

of equation (24) is

R = En H(1 )(kp) + F H (kp) , (26)

n n n

where the H(l) (kp) and H(2) (kp) are Hankel functions. Equation
(25) is the harmonic equation with sin n8 and cos no as solutions.

The solution of equation (22), which is an even function
of 6 about 6 = 0 is

p = [E n H(1 ) (kp) + F H(2) (kp)] cos no (27)nn n n
n=0

The pressure due to the plane wave of eq. (6 in polar
...~... .. - ..... wav A. eq s

coordinate-) is
t

e

he
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CO

P = 2 eim~ (iri)(L) [H(') (kp) + H(2) (kp))cos nO (28)
n=0

n=O

where =2n=O

The total pressure is

Ptot + e ik  n l')H ( l) (kp)Ptot(En2 n
n=O

n

+ (F + e 2 )H(2) (kp) cos nO (29)

If we impose the condition that the particle velocity on the

transducer face is zero we find
in  inHl k

Fn + eikt en _ (En + 3 ik t eni n  ) (30)n2 n H (2)' (3o)
n 0

The expression for total pressure is therefore reduced co

eik nn)E~i~il)(kp H (1) '(kr°) H(2)(kP)]l
Po=nO [En +  nin] [H l)(kp) - n 10.Hp2 )(k) cos ne.

n=O )(ko

(31)

Equation (31) represents the collection of all fields

even about the y axis with zero particle velocity at the

transducer and in which a plane wave is moving in the positive
y direction. As before, if we could impose the boundary con-

dition at the baffle on equation (31) our problem would be

complete. This is not plausible because of the nature of the

equation for the baffle face in polar coordinates.

9
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Equations (21) and (31) are "almost" complete

representations for the sound field for the on axis plane wave

incident on a soft elliptical baffle-hard transducer complex.

Each of the collections of functions contains a valid representa-

tion of the solution function in some domain. Fortunately these

domains overlap. This follows from the fact that the solution

function is analytic in the free finite field. It is therefore

possible to determine the A2m and C2m+l in equation (21) and En
in equation (31) by "-artching" the two series at a point between

the baff].e and transducer.

9.
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III. MATCHING THE TWO REPRESENTATIONS

In order to match the two representations we choose2(t-r )

arbitrarily the point cp = n/2, . = 8 with e < p < arc sinh [ a J,
or in polar coordinates e = 7, P1 = [ t - a/2 sinh 0] for the

matching. At this point we will mat'h the function and all

partial derivatives (note that all odd derivatives in the x

direction are zero) to get

b2q+s [p(x',y'), , , 2q+s (xy) (x,y)]
by 2q axIS ax2q byS

at 0 = rr, p = pI p. = 3, and cp = r/2

for q = 0,1, 2 ... and s = 0, 1, 2 ...

The equations (32) form an infinite set of non-

homogeneous linear equations in the as yet undetermined constants

A2m, C 1 .1 and En . The solution of this system and hence the

description of the sound field may be obtained to any desired

accuracy by truncating the series expressions for ptot[,cp]

and ptot[p,6] at appropriate values of m and n and imposing

on these constants the proper finite set of conditions from

the set (32).

11
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IV. CONCLUSION

The sound field near the transducer is given by the
truncation of the solution to the Helmholtz equation as given

in equation (31). The scattered and incident portions of the

field are given by those terms of equation (31) which involve

Hankel functions of the first and second kinds respectively.
5

Hence, the total sound field and the scattered and incident

portions thereof can be computed using the technique described

above.

The technique used in solving this elliptical baffle-
circular transducer problem can also be applied to other sonar

problems. For example the problem of determining the interaction

of a circular transducer inside an elliptical dome during
transmission can be treated with precisely the same formal
rathematical tools as are used in this problem.

51bid., p. 1371
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